Source code for mrfmsim.component.magnet

import numpy as np
import numba as nb
from dataclasses import dataclass, field
from mrfmsim.component import ComponentBase


[docs] @dataclass class SphereMagnet(ComponentBase): """Spherical magnet object with its Bz, Bzx, Bzxx calculations. :param float magnet_radius: sphere magnet radius [nm] :param list magnet_origin: the position of the magnet origin :math:`(x, y, z)` [nm] :param float mu0_Ms: saturation magnetization [mT] """ magnet_radius: float = field(metadata={"unit": "nm", "format": ".1f"}) magnet_origin: list[float] = field(metadata={"unit": "nm", "format": ".1f"}) mu0_Ms: float = field(metadata={"unit": "mT"})
[docs] def Bz_method(self, x, y, z): r"""Calculate magnetic field :math:`B_z` [mT]. :param float x: :math:`x` coordinate of sample grid [nm] :param float y: :math:`y` coordinate of sample grid [nm] :param float z: :math:`z` coordinate of sample grid [nm] The magnetic field is calculated as .. math:: B_z = \dfrac{\mu_0 M_s}{3} \left( 3 \dfrac{Z^2}{R^5} - \dfrac{1}{R^3} \right) R = \sqrt{X^2+Y^2+Z^2} Here :math:`(x,y,z)` is the location at which we want to know the field; :math:`(x_0, y_0, z_0)` is the location of the center of the magnet; :math:`r` is the radius of the magnet; :math:`X = (x-x_0)/r`; :math:`Y = (y-y_0)/r`, and :math:`Z = (z-z_0)/r` are normalized distances to the center of the magnet; :math:`\mu_0 M_s` is the magnetic sphere's saturation magnetization in mT. """ dx = (x - self.magnet_origin[0]) / self.magnet_radius dy = (y - self.magnet_origin[1]) / self.magnet_radius dz = (z - self.magnet_origin[2]) / self.magnet_radius pre_term = self.mu0_Ms / 3.0 return pre_term * self._bz(dx, dy, dz)
@staticmethod @nb.vectorize( [nb.float64(nb.float64, nb.float64, nb.float64)], nopython=True, target="parallel", ) def _bz(dx, dy, dz): """Internal calculation for bz, optimized with numba. :param float dx: normalized distances to the center of the magnet in :math:`x` direction [nm] :param float dy: normalized distances to the center of the magnet in :math:`y` direction [nm] :param float dz: normalized distances to the center of the magnet in :math:`z` direction [nm] :return: bz without pre-term :rtype: float """ return ( -1.0 / np.sqrt(dx**2 + dy**2 + dz**2) ** 3 + 3.0 * dz**2 / np.sqrt(dx**2 + dy**2 + dz**2) ** 5 )
[docs] def Bzx_method(self, x, y, z): r"""Calculate magnetic field gradient :math:`B_{zx}`. :math:`B_{zx} \equiv \partial B_z / \partial x` [ :math:`\mathrm{mT} \: \mathrm{nm}^{-1}` ]. With :math:`X`, :math:`Y`, :math:`Z`, :math:`R`, :math:`r`, and :math:`\mu_0 M_s` defined in Bz(x, y, z), the magnetic field gradient is calculated as .. math:: B_{zx} = \dfrac{\partial B_z}{\partial x} = \dfrac{\mu_0 M_s}{r} X \: \left( \dfrac{1}{R^5} - 5 \dfrac{Z^2}{R^7} \right) R = \sqrt{X^2+Y^2+Z^2} :param float x: :math:`x` coordinate of sample grid [nm] :param float y: :math:`y` coordinate of sample grid [nm] :param float z: :math:`z` coordinate of sample grid [nm] :return: magnetic field gradient :rtype: np.array """ dx = (x - self.magnet_origin[0]) / self.magnet_radius dy = (y - self.magnet_origin[1]) / self.magnet_radius dz = (z - self.magnet_origin[2]) / self.magnet_radius pre_term = self.mu0_Ms / self.magnet_radius return pre_term * self._bzx(dx, dy, dz)
@staticmethod @nb.vectorize( [nb.float64(nb.float64, nb.float64, nb.float64)], nopython=True, target="parallel", ) def _bzx(dx, dy, dz): """Internal calculation for bzx, optimized with numba. :param float dx: normalized distances to the center of the magnet in :math:`x` direction [nm] :param float dy: normalized distances to the center of the magnet in :math:`y` direction [nm] :param float dz: normalized distances to the center of the magnet in :math:`z` direction [nm] :return: bzx without pre-term :rtype: float """ return dx * ( 1.0 / np.sqrt(dx**2 + dy**2 + dz**2) ** 5 - 5.0 * dz**2 / np.sqrt(dx**2 + dy**2 + dz**2) ** 7 )
[docs] def Bzxx_method(self, x, y, z): r"""Calculate magnetic field second derivative :math:`B_{zxx}`. :math:`B_{zxx} \equiv \partial^2 B_z / \partial x^2` [:math:`\mathrm{mT} \: \mathrm{nm}^{-2}`]. The inputs are With :math:`X`, :math:`Y`, :math:`Z`, :math:`R`, :math:`r`, and :math:`\mu_0 M_s` defined as above, the magnetic field second derivative is calculated as .. math:: B_{zxx} = \dfrac{\partial^2 B_z}{\partial x^2} = \dfrac{\mu_0 M_s}{r^2} \: \left( \dfrac{1}{R^5} - 5 \dfrac{X^2}{R^7} - 5 \dfrac{Z^2}{R^7} + 35 \dfrac{X^2 Z^2}{R^9} \right) R = \sqrt{X^2+Y^2+Z^2} :param float x: :math:`x` coordinate of sample grid [nm] :param float y: :math:`y` coordinate of sample grid [nm] :param float z: :math:`z` coordinate of sample grid [nm] :return: magnetic field second derivative :rtype: np.array """ dx = (x - self.magnet_origin[0]) / self.magnet_radius dy = (y - self.magnet_origin[1]) / self.magnet_radius dz = (z - self.magnet_origin[2]) / self.magnet_radius pre_term = self.mu0_Ms / (self.magnet_radius**2) return pre_term * self._bzxx(dx, dy, dz)
@staticmethod @nb.vectorize( [nb.float64(nb.float64, nb.float64, nb.float64)], nopython=True, target="parallel", ) def _bzxx(dx, dy, dz): """Internal calculation for bzxx, optimized with numba. :param float dx: normalized distances to the center of the magnet in :math:`x` direction [nm] :param float dy: normalized distances to the center of the magnet in :math:`y` direction [nm] :param float dz: normalized distances to the center of the magnet in :math:`z` direction [nm] :return: bzxx without pre-term :rtype: float """ return ( 1.0 / np.sqrt(dx**2 + dy**2 + dz**2) ** 5 - 5.0 * (dx**2) / np.sqrt(dx**2 + dy**2 + dz**2) ** 7 - 5.0 * (dz**2) / np.sqrt(dx**2 + dy**2 + dz**2) ** 7 + 35.0 * (dx**2) * (dz**2) / np.sqrt(dx**2 + dy**2 + dz**2) ** 9 )
[docs] @dataclass class RectangularMagnet(ComponentBase): """Rectangular magnet object with the bz, bzx, bzxx calculations. :param list magnet_length: length of rectangular magnet in :math:`(x, y, z)` direction [nm] :param list magnet_origin: the position of the magnet origin :math:`(x, y, z)` [nm] :param float mu0_Ms: saturation magnetization [mT] """ magnet_length: list[float] = field(metadata={"unit": "nm", "format": ".1f"}) magnet_origin: list[float] = field(metadata={"unit": "nm", "format": ".1f"}) mu0_Ms: float = field(metadata={"unit": "mT"}) def __post_init__(self): self._range = np.column_stack( ( -np.array(self.magnet_length) / 2 + self.magnet_origin, np.array(self.magnet_length) / 2 + self.magnet_origin, ) ).ravel() self._pre_term = self.mu0_Ms / (4 * np.pi)
[docs] def Bz_method(self, x, y, z): r"""Calculate magnetic field :math:`B_z` [mT]. The magnetic field is calculated following Ravaud2009 [#]_. The magnet is set up so that the :math:`x` and :math:`y` dimensions are centered about the zero point. The translation in :math:`z` shifts the tip of the magnet in the :math:`z`-direction to be the given distance from the surface. Using the Coulombian model, assuming a uniform magnetization throughout the volume of the magnet and modeling each face of the magnet as a layer of continuous current density. The total field is found by summing over the faces. The magnetic field is given by: .. math:: B_z = \dfrac{\mu_0 M_s}{4\pi} \sum_{i=1}^{2} \sum_{j=1}^2 \sum_{k=1}^2(-1)^{i+j+k} arctan \left( \dfrac{(x - x_i)(y - y_i))}{(z - z_k)R} \right) Here :math:`(x,y,z)` are the coordinates for the location at which we want to know the field; The magnet spans from x1 to x2 in the :math:`x`-direction, y1 to y2 in the :math:`y`-direction, and z1 to z2 in the :math:`z`-direction; .. math:: R = \sqrt{(x - x_i)^2 + (y - y_j)^2 + (z - z_k)^2} where :math:`\mu_0 M_s` is the magnet's saturation magnetization in mT. .. [#] Ravaud, R. and Lemarquand, G. "Magnetic field produced by a parallelepipedic magnet of various and uniform polarization" , *PIER*, **2009**, *98*, 207-219 [`10.2528/PIER09091704 <http://dx.doi.org/10.2528/PIER09091704>`__]. :param float x: :math:`x` coordinate of sample grid [nm] :param float y: :math:`y` coordinate of sample grid [nm] :param float z: :math:`z` coordinate of sample grid [nm] """ dx1, dx2 = x - self._range[0], x - self._range[1] dy1, dy2 = y - self._range[2], y - self._range[3] dz1, dz2 = z - self._range[4], z - self._range[5] return self._pre_term * self._bz(dx1, dx2, dy1, dy2, dz1, dz2)
@staticmethod @nb.vectorize( [ nb.float64( nb.float64, nb.float64, nb.float64, nb.float64, nb.float64, nb.float64, ) ], nopython=True, target="parallel", ) def _bz(dx1, dx2, dy1, dy2, dz1, dz2): """Calculate the summation term for magnetic field optimized by numba. See method Bz_method for the explanation. :param float dx1: distance between grid and one end of magnet in :math:`x` direction [nm] :param float dx2: distance between grid and other end of magnet in :math:`x` direction [nm] :param float dy1: distance between grid and one end of magnet in :math:`y` direction [nm] :param float dy2: distance between grid and other end of magnet in :math:`y` direction [nm] :param float dz1: distance between grid and one end of magnet in :math:`z` direction [nm] :param float dz2: distance between grid and other end of magnet in :math:`z` direction [nm] """ return ( -np.arctan2(dx1 * dy1, (np.sqrt(dx1**2 + dy1**2 + dz1**2) * dz1)) + np.arctan2(dx2 * dy1, (np.sqrt(dx2**2 + dy1**2 + dz1**2) * dz1)) + np.arctan2(dx1 * dy2, (np.sqrt(dx1**2 + dy2**2 + dz1**2) * dz1)) - np.arctan2(dx2 * dy2, (np.sqrt(dx2**2 + dy2**2 + dz1**2) * dz1)) + np.arctan2(dx1 * dy1, (np.sqrt(dx1**2 + dy1**2 + dz2**2) * dz2)) - np.arctan2(dx2 * dy1, (np.sqrt(dx2**2 + dy1**2 + dz2**2) * dz2)) - np.arctan2(dx1 * dy2, (np.sqrt(dx1**2 + dy2**2 + dz2**2) * dz2)) + np.arctan2(dx2 * dy2, (np.sqrt(dx2**2 + dy2**2 + dz2**2) * dz2)) )
[docs] def Bzx_method(self, x, y, z): r"""Calculate magnetic field gradient :math:`B_{zx}`. :math:`B_{zx} \equiv \partial B_z / \partial x` [:math:`\mathrm{mT} \: \mathrm{nm}^{-1}`]. The magnetic field gradient :math:`B_{zx} = \dfrac{\partial{B_z}}{\partial x}` is given by the following: .. math:: B_{zx} = \dfrac{\mu_0 M_s}{4 \pi} \sum_{i=1}^2 \sum_{j=1}^2 \sum_{k=1}^2(-1)^{i+j+k} \left( \dfrac{(y-y_j)(z-z_k)}{ R((x-x_i)^2 + (z-z_k)^2))} \right) As described above, :math:`(x,y,z)` are coordinates for the location at which we want to know the field gradient; the magnet spans from x1 to x2 in the ``x``-direction, y1 to y2 in the ``y``-direction, and from z1 to z2 in the ``z``-direction; .. math:: R = \sqrt{(x - x_i)^2 + (y - y_j)^2 + (z - z_k)^2} :math:`\mu_0 M_s` is the magnet's saturation magnetization in mT. :param float x: :math:`x` coordinate [nm] :param float y: :math:`y` coordinate [nm] :param float z: :math:`z` coordinate [nm] """ dx1, dx2 = x - self._range[0], x - self._range[1] dy1, dy2 = y - self._range[2], y - self._range[3] dz1, dz2 = z - self._range[4], z - self._range[5] return self._pre_term * self._bzx(dx1, dx2, dy1, dy2, dz1, dz2)
@staticmethod @nb.vectorize( [ nb.float64( nb.float64, nb.float64, nb.float64, nb.float64, nb.float64, nb.float64, ) ], nopython=True, target="parallel", ) def _bzx(dx1, dx2, dy1, dy2, dz1, dz2): """Calculate the summation term for magnetic field gradient. Optimized with numba. See method Bzx_method for the explanation. :param float dx1: distance between grid and one end of magnet in :math:`x` direction [nm] :param float dx2: distance between grid and other end of magnet in :math:`x` direction [nm] :param float dy1: distance between grid and one end of magnet in :math:`y` direction [nm] :param float dy2: distance between grid and other end of magnet in :math:`y` direction [nm] :param float dz1: distance between grid and one end of magnet in :math:`z` direction [nm] :param float dz2: distance between grid and other end of magnet in :math:`z` direction [nm] """ return ( -dy1 * dz1 / (np.sqrt(dx1**2 + dy1**2 + dz1**2) * (dx1**2 + dz1**2)) + dy1 * dz1 / (np.sqrt(dx2**2 + dy1**2 + dz1**2) * (dx2**2 + dz1**2)) + dy2 * dz1 / (np.sqrt(dx1**2 + dy2**2 + dz1**2) * (dx1**2 + dz1**2)) - dy2 * dz1 / (np.sqrt(dx2**2 + dy2**2 + dz1**2) * (dx2**2 + dz1**2)) + dy1 * dz2 / (np.sqrt(dx1**2 + dy1**2 + dz2**2) * (dx1**2 + dz2**2)) - dy1 * dz2 / (np.sqrt(dx2**2 + dy1**2 + dz2**2) * (dx2**2 + dz2**2)) - dy2 * dz2 / (np.sqrt(dx1**2 + dy2**2 + dz2**2) * (dx1**2 + dz2**2)) + dy2 * dz2 / (np.sqrt(dx2**2 + dy2**2 + dz2**2) * (dx2**2 + dz2**2)) )
[docs] def Bzxx_method(self, x, y, z): r"""Calculate magnetic field second derivative :math:`B_{zxx}`. :math:`B_{zxx} \equiv \partial^2 B_z / \partial x^2` [ :math:`\mathrm{mT} \; \mathrm{nm}^{-2}`] The magnetic field's second derivative is given by the following: .. math:: B_{zxx} = \dfrac{\partial^2 B_z}{\partial x^2} = \dfrac{\mu_0 M_s}{4 \pi} \sum_{i=1}^2 \sum_{j=1}^2 \sum_{k=1}^2(-1)^{i+j+k} \left( \dfrac{-(x-x_i)(y-y_j)(z-z_k) (3(x-x_i)^2 +2(y-y_j)^2 + 3(z-z_k)^2)} {((x-x_i)^2 + (y-y_j)^2 + (z-z_k)^2)^{3/2} ((x-x_i)^2 + (z-z_k)^2)^2} \right) with the variables defined above. :param float x: :math:`x` coordinate [nm] :param float y: :math:`y` coordinate [nm] :param float z: :math:`z` coordinate [nm] """ dx1, dx2 = x - self._range[0], x - self._range[1] dy1, dy2 = y - self._range[2], y - self._range[3] dz1, dz2 = z - self._range[4], z - self._range[5] return self._pre_term * self._bzxx(dx1, dx2, dy1, dy2, dz1, dz2)
@staticmethod @nb.vectorize( [ nb.float64( nb.float64, nb.float64, nb.float64, nb.float64, nb.float64, nb.float64, ) ], nopython=True, target="parallel", ) def _bzxx(dx1, dx2, dy1, dy2, dz1, dz2): """The summation term for the second derivative of magnetic field. Optimized by numba. See Bzxx_method for the explanation. :param float dx1: distance between grid and one end of magnet in :math:`x` direction [nm] :param float dx2: distance between grid and other end of magnet in :math:`x` direction [nm] :param float dy1: distance between grid and one end of magnet in :math:`y` direction [nm] :param float dy2: distance between grid and other end of magnet in :math:`y` direction [nm] :param float dz1: distance between grid and one end of magnet in :math:`z` direction [nm] :param float dz2: distance between grid and other end of magnet in :math:`z` direction [nm] """ return ( +dx1 * dy1 * dz1 * (3.0 * dx1**2 + 2.0 * dy1**2 + 3.0 * dz1**2) / ((dx1**2 + dy1**2 + dz1**2) ** 1.5 * (dx1**2 + dz1**2) ** 2) - dx2 * dy1 * dz1 * (3.0 * dx2**2 + 2.0 * dy1**2 + 3.0 * dz1**2) / ((dx2**2 + dy1**2 + dz1**2) ** 1.5 * (dx2**2 + dz1**2) ** 2) - dx1 * dy2 * dz1 * (3.0 * dx1**2 + 2.0 * dy2**2 + 3.0 * dz1**2) / ((dx1**2 + dy2**2 + dz1**2) ** 1.5 * (dx1**2 + dz1**2) ** 2) + dx2 * dy2 * dz1 * (3.0 * dx2**2 + 2.0 * dy2**2 + 3.0 * dz1**2) / ((dx2**2 + dy2**2 + dz1**2) ** 1.5 * (dx2**2 + dz1**2) ** 2) - dx1 * dy1 * dz2 * (3.0 * dx1**2 + 2.0 * dy1**2 + 3.0 * dz2**2) / ((dx1**2 + dy1**2 + dz2**2) ** 1.5 * (dx1**2 + dz2**2) ** 2) + dx2 * dy1 * dz2 * (3.0 * dx2**2 + 2.0 * dy1**2 + 3.0 * dz2**2) / ((dx2**2 + dy1**2 + dz2**2) ** 1.5 * (dx2**2 + dz2**2) ** 2) + dx1 * dy2 * dz2 * (3.0 * dx1**2 + 2.0 * dy2**2 + 3.0 * dz2**2) / ((dx1**2 + dy2**2 + dz2**2) ** 1.5 * (dx1**2 + dz2**2) ** 2) - dx2 * dy2 * dz2 * (3.0 * dx2**2 + 2.0 * dy2**2 + 3.0 * dz2**2) / ((dx2**2 + dy2**2 + dz2**2) ** 1.5 * (dx2**2 + dz2**2) ** 2) )