Source code for mrfmsim.component.cylindermagnet

import numpy as np
import numba as nb
from dataclasses import dataclass, field
from mrfmsim.component import ComponentBase


[docs] @dataclass class CylinderMagnetApprox(ComponentBase): """Cylinder magnet object approximated by Rectangular Magnets. :param float magnet_radius: cylinder magnet radius [nm] :param float magnet_length: cylinder magnet length [nm] :param tuple magnet_origin: the position of the magnet origin :math:`(x, y, z)` [nm] :param float mu0_Ms: saturation magnetization [mT] """ magnet_radius: float = field(metadata={"unit": "nm", "format": ".1f"}) magnet_length: float = field(metadata={"unit": "nm", "format": ".1f"}) magnet_origin: tuple[float, float, float] = field( metadata={"unit": "nm", "format": ".1f"} ) mu0_Ms: float = field(metadata={"unit": "mT"}) def __post_init__(self): d = self.magnet_radius / 10 self._range = np.array( [ [ self.magnet_origin[0] - 3 * d, self.magnet_origin[0] + 3 * d, self.magnet_origin[1] - 10 * d, self.magnet_origin[1] + 10 * d, self.magnet_origin[2] - self.magnet_length / 2, self.magnet_origin[2] + self.magnet_length / 2, ], [ self.magnet_origin[0] - 5 * d, self.magnet_origin[0] - 3 * d, self.magnet_origin[1] - 9 * d, self.magnet_origin[1] + 9 * d, self.magnet_origin[2] - self.magnet_length / 2, self.magnet_origin[2] + self.magnet_length / 2, ], [ self.magnet_origin[0] + 3 * d, self.magnet_origin[0] + 5 * d, self.magnet_origin[1] - 9 * d, self.magnet_origin[1] + 9 * d, self.magnet_origin[2] - self.magnet_length / 2, self.magnet_origin[2] + self.magnet_length / 2, ], [ self.magnet_origin[0] - 7 * d, self.magnet_origin[0] - 5 * d, self.magnet_origin[1] - 8 * d, self.magnet_origin[1] + 8 * d, self.magnet_origin[2] - self.magnet_length / 2, self.magnet_origin[2] + self.magnet_length / 2, ], [ self.magnet_origin[0] + 5 * d, self.magnet_origin[0] + 7 * d, self.magnet_origin[1] - 8 * d, self.magnet_origin[1] + 8 * d, self.magnet_origin[2] - self.magnet_length / 2, self.magnet_origin[2] + self.magnet_length / 2, ], [ self.magnet_origin[0] - 8 * d, self.magnet_origin[0] - 7 * d, self.magnet_origin[1] - 7 * d, self.magnet_origin[1] + 7 * d, self.magnet_origin[2] - self.magnet_length / 2, self.magnet_origin[2] + self.magnet_length / 2, ], [ self.magnet_origin[0] + 7 * d, self.magnet_origin[0] + 8 * d, self.magnet_origin[1] - 7 * d, self.magnet_origin[1] + 7 * d, self.magnet_origin[2] - self.magnet_length / 2, self.magnet_origin[2] + self.magnet_length / 2, ], [ self.magnet_origin[0] - 9 * d, self.magnet_origin[0] - 8 * d, self.magnet_origin[1] - 5 * d, self.magnet_origin[1] + 5 * d, self.magnet_origin[2] - self.magnet_length / 2, self.magnet_origin[2] + self.magnet_length / 2, ], [ self.magnet_origin[0] + 8 * d, self.magnet_origin[0] + 9 * d, self.magnet_origin[1] - 5 * d, self.magnet_origin[1] + 5 * d, self.magnet_origin[2] - self.magnet_length / 2, self.magnet_origin[2] + self.magnet_length / 2, ], [ self.magnet_origin[0] - 10 * d, self.magnet_origin[0] - 9 * d, self.magnet_origin[1] - 3 * d, self.magnet_origin[1] + 3 * d, self.magnet_origin[2] - self.magnet_length / 2, self.magnet_origin[2] + self.magnet_length / 2, ], [ self.magnet_origin[0] + 9 * d, self.magnet_origin[0] + 10 * d, self.magnet_origin[1] - 3 * d, self.magnet_origin[1] + 3 * d, self.magnet_origin[2] - self.magnet_length / 2, self.magnet_origin[2] + self.magnet_length / 2, ], ] ) self._pre_term = self.mu0_Ms / (4 * np.pi)
[docs] def Bz_method(self, x, y, z): r"""Calculate magnetic field :math:`B_z` [mT]. Approximating Cylinder Magnet by 11 Rectangular Magnets. When viewed from the vertical direction, we are using a row of rectangles to approximate a circle, these rectangular blocks are arranged side by side. The magnetic field of each rectangular magnet is calculated following the method described in Ravaud2009 [#]_. The magnet is set up so that the :math:`x` and :math:`y` dimensions are centered about the zero point. The translation in :math:`z` shifts the tip of the magnet in the :math:`z`-direction to be the given distance from the surface. Using the Coulombian model, assuming a uniform magnetization throughout the volume of the magnet and modeling each face of the magnet as a layer of continuous current density. The total field is found by summing over the faces. The magnetic field is given by: .. math:: B_z = \dfrac{\mu_0 M_s}{4\pi} \sum_{i=1}^{2} \sum_{j=1}^2 \sum_{k=1}^2(-1)^{i+j+k} \arctan \left( \dfrac{(x - x_i)(y - y_i))}{(z - z_k)R} \right) Here :math:`(x,y,z)` are the coordinates for the location at which we want to know the field; The magnet spans from :math:`x_1` to :math:`x_2` in the :math:`x`-direction, :math:`y_1` to :math:`y_2` in the :math:`y`-direction, and :math:`z_1` to :math:`z_2` in the :math:`z`-direction; .. math:: R = \sqrt{(x - x_i)^2 + (y - y_j)^2 + (z - z_k)^2} where :math:`\mu_0 M_s` is the magnet's saturation magnetization in mT. .. [#] Ravaud, R. and Lemarquand, G. "Magnetic field produced by a parallelepipedic magnet of various and uniform polarization", *PIER*, **2009**, *98*, 207-219 [`10.2528/PIER09091704 <http://dx.doi.org/10.2528/PIER09091704>`__]. :param float x: :math:`x` coordinate of sample grid [nm] :param float y: :math:`y` coordinate of sample grid [nm] :param float z: :math:`z` coordinate of sample grid [nm] """ dx11, dx12 = x - self._range[0][0], x - self._range[0][1] dy11, dy12 = y - self._range[0][2], y - self._range[0][3] dz11, dz12 = z - self._range[0][4], z - self._range[0][5] dx21, dx22 = x - self._range[1][0], x - self._range[1][1] dy21, dy22 = y - self._range[1][2], y - self._range[1][3] dz21, dz22 = z - self._range[1][4], z - self._range[1][5] dx31, dx32 = x - self._range[2][0], x - self._range[2][1] dy31, dy32 = y - self._range[2][2], y - self._range[2][3] dz31, dz32 = z - self._range[2][4], z - self._range[2][5] dx41, dx42 = x - self._range[3][0], x - self._range[3][1] dy41, dy42 = y - self._range[3][2], y - self._range[3][3] dz41, dz42 = z - self._range[3][4], z - self._range[3][5] dx51, dx52 = x - self._range[4][0], x - self._range[4][1] dy51, dy52 = y - self._range[4][2], y - self._range[4][3] dz51, dz52 = z - self._range[4][4], z - self._range[4][5] dx61, dx62 = x - self._range[5][0], x - self._range[5][1] dy61, dy62 = y - self._range[5][2], y - self._range[5][3] dz61, dz62 = z - self._range[5][4], z - self._range[5][5] dx71, dx72 = x - self._range[6][0], x - self._range[6][1] dy71, dy72 = y - self._range[6][2], y - self._range[6][3] dz71, dz72 = z - self._range[6][4], z - self._range[6][5] dx81, dx82 = x - self._range[7][0], x - self._range[7][1] dy81, dy82 = y - self._range[7][2], y - self._range[7][3] dz81, dz82 = z - self._range[7][4], z - self._range[7][5] dx91, dx92 = x - self._range[8][0], x - self._range[8][1] dy91, dy92 = y - self._range[8][2], y - self._range[8][3] dz91, dz92 = z - self._range[8][4], z - self._range[8][5] dx101, dx102 = x - self._range[9][0], x - self._range[9][1] dy101, dy102 = y - self._range[9][2], y - self._range[9][3] dz101, dz102 = z - self._range[9][4], z - self._range[9][5] dx111, dx112 = x - self._range[10][0], x - self._range[10][1] dy111, dy112 = y - self._range[10][2], y - self._range[10][3] dz111, dz112 = z - self._range[10][4], z - self._range[10][5] return self._pre_term * ( self._bz(dx11, dx12, dy11, dy12, dz11, dz12) + self._bz(dx21, dx22, dy21, dy22, dz21, dz22) + self._bz(dx31, dx32, dy31, dy32, dz31, dz32) + self._bz(dx41, dx42, dy41, dy42, dz41, dz42) + self._bz(dx51, dx52, dy51, dy52, dz51, dz52) + self._bz(dx61, dx62, dy61, dy62, dz61, dz62) + self._bz(dx71, dx72, dy71, dy72, dz71, dz72) + self._bz(dx81, dx82, dy81, dy82, dz81, dz82) + self._bz(dx91, dx92, dy91, dy92, dz91, dz92) + self._bz(dx101, dx102, dy101, dy102, dz101, dz102) + self._bz(dx111, dx112, dy111, dy112, dz111, dz112) )
@staticmethod @nb.vectorize( [ nb.float64( nb.float64, nb.float64, nb.float64, nb.float64, nb.float64, nb.float64, ) ], nopython=True, target="parallel", ) def _bz(dx1, dx2, dy1, dy2, dz1, dz2): """Calculate the summation term for magnetic field optimized by numba. See method Bz_method for the explanation. :param float dx1: distance between grid and one end of magnet in :math:`x` direction [nm] :param float dx2: distance between grid and other end of magnet in :math:`x` direction [nm] :param float dy1: distance between grid and one end of magnet in :math:`y` direction [nm] :param float dy2: distance between grid and other end of magnet in :math:`y` direction [nm] :param float dz1: distance between grid and one end of magnet in :math:`z` direction [nm] :param float dz2: distance between grid and other end of magnet in :math:`z` direction [nm] """ return ( -np.arctan2(dx1 * dy1, (np.sqrt(dx1**2 + dy1**2 + dz1**2) * dz1)) + np.arctan2(dx2 * dy1, (np.sqrt(dx2**2 + dy1**2 + dz1**2) * dz1)) + np.arctan2(dx1 * dy2, (np.sqrt(dx1**2 + dy2**2 + dz1**2) * dz1)) - np.arctan2(dx2 * dy2, (np.sqrt(dx2**2 + dy2**2 + dz1**2) * dz1)) + np.arctan2(dx1 * dy1, (np.sqrt(dx1**2 + dy1**2 + dz2**2) * dz2)) - np.arctan2(dx2 * dy1, (np.sqrt(dx2**2 + dy1**2 + dz2**2) * dz2)) - np.arctan2(dx1 * dy2, (np.sqrt(dx1**2 + dy2**2 + dz2**2) * dz2)) + np.arctan2(dx2 * dy2, (np.sqrt(dx2**2 + dy2**2 + dz2**2) * dz2)) )
[docs] def Bzx_method(self, x, y, z): r"""Calculate magnetic field gradient :math:`B_{zx}`. Approximating Cylinder Magnet by 11 Rectangular Magnets. When viewed from the vertical direction, we are using a row of rectangles to approximate a circle, these rectangular blocks are arranged side by side. The magnetic field gradient for RectangularMagnet is: :math:`B_{zx} = \dfrac{\partial{B_z}}{\partial x}` is given by the following: .. math:: B_{zx} = \dfrac{\mu_0 M_s}{4 \pi} \sum_{i=1}^2 \sum_{j=1}^2 \sum_{k=1}^2(-1)^{i+j+k} \left( \dfrac{(y-y_j)(z-z_k)}{ R((x-x_i)^2 + (z-z_k)^2))} \right) As described above, :math:`(x,y,z)` are coordinates for the location at which we want to know the field gradient; the magnet spans from x1 to x2 in the :math:`x`-direction, y1 to y2 in the :math:`y`-direction, and from z1 to z2 in the :math:`z`-direction; .. math:: R = \sqrt{(x - x_i)^2 + (y - y_j)^2 + (z - z_k)^2} :math:`\mu_0 M_s` is the magnet's saturation magnetization in mT. :param float x: :math:`x` coordinate [nm] :param float y: :math:`y` coordinate [nm] :param float z: :math:`z` coordinate [nm] """ dx11, dx12 = x - self._range[0][0], x - self._range[0][1] dy11, dy12 = y - self._range[0][2], y - self._range[0][3] dz11, dz12 = z - self._range[0][4], z - self._range[0][5] dx21, dx22 = x - self._range[1][0], x - self._range[1][1] dy21, dy22 = y - self._range[1][2], y - self._range[1][3] dz21, dz22 = z - self._range[1][4], z - self._range[1][5] dx31, dx32 = x - self._range[2][0], x - self._range[2][1] dy31, dy32 = y - self._range[2][2], y - self._range[2][3] dz31, dz32 = z - self._range[2][4], z - self._range[2][5] dx41, dx42 = x - self._range[3][0], x - self._range[3][1] dy41, dy42 = y - self._range[3][2], y - self._range[3][3] dz41, dz42 = z - self._range[3][4], z - self._range[3][5] dx51, dx52 = x - self._range[4][0], x - self._range[4][1] dy51, dy52 = y - self._range[4][2], y - self._range[4][3] dz51, dz52 = z - self._range[4][4], z - self._range[4][5] dx61, dx62 = x - self._range[5][0], x - self._range[5][1] dy61, dy62 = y - self._range[5][2], y - self._range[5][3] dz61, dz62 = z - self._range[5][4], z - self._range[5][5] dx71, dx72 = x - self._range[6][0], x - self._range[6][1] dy71, dy72 = y - self._range[6][2], y - self._range[6][3] dz71, dz72 = z - self._range[6][4], z - self._range[6][5] dx81, dx82 = x - self._range[7][0], x - self._range[7][1] dy81, dy82 = y - self._range[7][2], y - self._range[7][3] dz81, dz82 = z - self._range[7][4], z - self._range[7][5] dx91, dx92 = x - self._range[8][0], x - self._range[8][1] dy91, dy92 = y - self._range[8][2], y - self._range[8][3] dz91, dz92 = z - self._range[8][4], z - self._range[8][5] dx101, dx102 = x - self._range[9][0], x - self._range[9][1] dy101, dy102 = y - self._range[9][2], y - self._range[9][3] dz101, dz102 = z - self._range[9][4], z - self._range[9][5] dx111, dx112 = x - self._range[10][0], x - self._range[10][1] dy111, dy112 = y - self._range[10][2], y - self._range[10][3] dz111, dz112 = z - self._range[10][4], z - self._range[10][5] return self._pre_term * ( self._bzx(dx11, dx12, dy11, dy12, dz11, dz12) + self._bzx(dx21, dx22, dy21, dy22, dz21, dz22) + self._bzx(dx31, dx32, dy31, dy32, dz31, dz32) + self._bzx(dx41, dx42, dy41, dy42, dz41, dz42) + self._bzx(dx51, dx52, dy51, dy52, dz51, dz52) + self._bzx(dx61, dx62, dy61, dy62, dz61, dz62) + self._bzx(dx71, dx72, dy71, dy72, dz71, dz72) + self._bzx(dx81, dx82, dy81, dy82, dz81, dz82) + self._bzx(dx91, dx92, dy91, dy92, dz91, dz92) + self._bzx(dx101, dx102, dy101, dy102, dz101, dz102) + self._bzx(dx111, dx112, dy111, dy112, dz111, dz112) )
@staticmethod @nb.vectorize( [ nb.float64( nb.float64, nb.float64, nb.float64, nb.float64, nb.float64, nb.float64, ) ], nopython=True, target="parallel", ) def _bzx(dx1, dx2, dy1, dy2, dz1, dz2): """Calculate the summation term for magnetic field gradient. Optimized with numba. See method ``Bzx_method`` for the explanation. :param float dx1: distance between grid and one end of magnet in :math:`x` direction [nm] :param float dx2: distance between grid and other end of magnet in :math:`x` direction [nm] :param float dy1: distance between grid and one end of magnet in :math:`y` direction [nm] :param float dy2: distance between grid and other end of magnet in :math:`y` direction [nm] :param float dz1: distance between grid and one end of magnet in :math:`z` direction [nm] :param float dz2: distance between grid and other end of magnet in :math:`z` direction [nm] """ return ( -dy1 * dz1 / (np.sqrt(dx1**2 + dy1**2 + dz1**2) * (dx1**2 + dz1**2)) + dy1 * dz1 / (np.sqrt(dx2**2 + dy1**2 + dz1**2) * (dx2**2 + dz1**2)) + dy2 * dz1 / (np.sqrt(dx1**2 + dy2**2 + dz1**2) * (dx1**2 + dz1**2)) - dy2 * dz1 / (np.sqrt(dx2**2 + dy2**2 + dz1**2) * (dx2**2 + dz1**2)) + dy1 * dz2 / (np.sqrt(dx1**2 + dy1**2 + dz2**2) * (dx1**2 + dz2**2)) - dy1 * dz2 / (np.sqrt(dx2**2 + dy1**2 + dz2**2) * (dx2**2 + dz2**2)) - dy2 * dz2 / (np.sqrt(dx1**2 + dy2**2 + dz2**2) * (dx1**2 + dz2**2)) + dy2 * dz2 / (np.sqrt(dx2**2 + dy2**2 + dz2**2) * (dx2**2 + dz2**2)) )
[docs] def Bzxx_method(self, x, y, z): r"""Calculate magnetic field second derivative :math:`B_{zxx}`. Approximating Cylinder Magnet by 11 Rectangular Magnets. When viewed from the vertical direction, we are using a row of rectangles to approximate a circle, these rectangular blocks are arranged side by side. The magnetic field second derivative for RectangularMagnet is: :math:`B_{zxx} \equiv \partial^2 B_z / \partial x^2` [ :math:`\mathrm{mT} \; \mathrm{nm}^{-2}`] The magnetic field's second derivative is given by the following: .. math:: B_{zxx} = \dfrac{\partial^2 B_z}{\partial x^2} = \dfrac{\mu_0 M_s}{4 \pi} \sum_{i=1}^2 \sum_{j=1}^2 \sum_{k=1}^2(-1)^{i+j+k} \left( \dfrac{-(x-x_i)(y-y_j)(z-z_k) (3(x-x_i)^2 +2(y-y_j)^2 + 3(z-z_k)^2)} {((x-x_i)^2 + (y-y_j)^2 + (z-z_k)^2)^{3/2} ((x-x_i)^2 + (z-z_k)^2)^2} \right) with the variables defined above. :param float x: :math:`x` coordinate [nm] :param float y: :math:`y` coordinate [nm] :param float z: :math:`z` coordinate [nm] """ dx11, dx12 = x - self._range[0][0], x - self._range[0][1] dy11, dy12 = y - self._range[0][2], y - self._range[0][3] dz11, dz12 = z - self._range[0][4], z - self._range[0][5] dx21, dx22 = x - self._range[1][0], x - self._range[1][1] dy21, dy22 = y - self._range[1][2], y - self._range[1][3] dz21, dz22 = z - self._range[1][4], z - self._range[1][5] dx31, dx32 = x - self._range[2][0], x - self._range[2][1] dy31, dy32 = y - self._range[2][2], y - self._range[2][3] dz31, dz32 = z - self._range[2][4], z - self._range[2][5] dx41, dx42 = x - self._range[3][0], x - self._range[3][1] dy41, dy42 = y - self._range[3][2], y - self._range[3][3] dz41, dz42 = z - self._range[3][4], z - self._range[3][5] dx51, dx52 = x - self._range[4][0], x - self._range[4][1] dy51, dy52 = y - self._range[4][2], y - self._range[4][3] dz51, dz52 = z - self._range[4][4], z - self._range[4][5] dx61, dx62 = x - self._range[5][0], x - self._range[5][1] dy61, dy62 = y - self._range[5][2], y - self._range[5][3] dz61, dz62 = z - self._range[5][4], z - self._range[5][5] dx71, dx72 = x - self._range[6][0], x - self._range[6][1] dy71, dy72 = y - self._range[6][2], y - self._range[6][3] dz71, dz72 = z - self._range[6][4], z - self._range[6][5] dx81, dx82 = x - self._range[7][0], x - self._range[7][1] dy81, dy82 = y - self._range[7][2], y - self._range[7][3] dz81, dz82 = z - self._range[7][4], z - self._range[7][5] dx91, dx92 = x - self._range[8][0], x - self._range[8][1] dy91, dy92 = y - self._range[8][2], y - self._range[8][3] dz91, dz92 = z - self._range[8][4], z - self._range[8][5] dx101, dx102 = x - self._range[9][0], x - self._range[9][1] dy101, dy102 = y - self._range[9][2], y - self._range[9][3] dz101, dz102 = z - self._range[9][4], z - self._range[9][5] dx111, dx112 = x - self._range[10][0], x - self._range[10][1] dy111, dy112 = y - self._range[10][2], y - self._range[10][3] dz111, dz112 = z - self._range[10][4], z - self._range[10][5] return self._pre_term * ( self._bzxx(dx11, dx12, dy11, dy12, dz11, dz12) + self._bzxx(dx21, dx22, dy21, dy22, dz21, dz22) + self._bzxx(dx31, dx32, dy31, dy32, dz31, dz32) + self._bzxx(dx41, dx42, dy41, dy42, dz41, dz42) + self._bzxx(dx51, dx52, dy51, dy52, dz51, dz52) + self._bzxx(dx61, dx62, dy61, dy62, dz61, dz62) + self._bzxx(dx71, dx72, dy71, dy72, dz71, dz72) + self._bzxx(dx81, dx82, dy81, dy82, dz81, dz82) + self._bzxx(dx91, dx92, dy91, dy92, dz91, dz92) + self._bzxx(dx101, dx102, dy101, dy102, dz101, dz102) + self._bzxx(dx111, dx112, dy111, dy112, dz111, dz112) )
@staticmethod @nb.vectorize( [ nb.float64( nb.float64, nb.float64, nb.float64, nb.float64, nb.float64, nb.float64, ) ], nopython=True, target="parallel", ) def _bzxx(dx1, dx2, dy1, dy2, dz1, dz2): """The summation term for the second derivative of magnetic field. Optimized by numba. See Bzxx_method for the explanation. :param float dx1: distance between grid and one end of magnet in :math:`x` direction [nm] :param float dx2: distance between grid and other end of magnet in :math:`x` direction [nm] :param float dy1: distance between grid and one end of magnet in :math:`y` direction [nm] :param float dy2: distance between grid and other end of magnet in :math:`y` direction [nm] :param float dz1: distance between grid and one end of magnet in :math:`z` direction [nm] :param float dz2: distance between grid and other end of magnet in :math:`z` direction [nm] """ return ( +dx1 * dy1 * dz1 * (3.0 * dx1**2 + 2.0 * dy1**2 + 3.0 * dz1**2) / ((dx1**2 + dy1**2 + dz1**2) ** 1.5 * (dx1**2 + dz1**2) ** 2) - dx2 * dy1 * dz1 * (3.0 * dx2**2 + 2.0 * dy1**2 + 3.0 * dz1**2) / ((dx2**2 + dy1**2 + dz1**2) ** 1.5 * (dx2**2 + dz1**2) ** 2) - dx1 * dy2 * dz1 * (3.0 * dx1**2 + 2.0 * dy2**2 + 3.0 * dz1**2) / ((dx1**2 + dy2**2 + dz1**2) ** 1.5 * (dx1**2 + dz1**2) ** 2) + dx2 * dy2 * dz1 * (3.0 * dx2**2 + 2.0 * dy2**2 + 3.0 * dz1**2) / ((dx2**2 + dy2**2 + dz1**2) ** 1.5 * (dx2**2 + dz1**2) ** 2) - dx1 * dy1 * dz2 * (3.0 * dx1**2 + 2.0 * dy1**2 + 3.0 * dz2**2) / ((dx1**2 + dy1**2 + dz2**2) ** 1.5 * (dx1**2 + dz2**2) ** 2) + dx2 * dy1 * dz2 * (3.0 * dx2**2 + 2.0 * dy1**2 + 3.0 * dz2**2) / ((dx2**2 + dy1**2 + dz2**2) ** 1.5 * (dx2**2 + dz2**2) ** 2) + dx1 * dy2 * dz2 * (3.0 * dx1**2 + 2.0 * dy2**2 + 3.0 * dz2**2) / ((dx1**2 + dy2**2 + dz2**2) ** 1.5 * (dx1**2 + dz2**2) ** 2) - dx2 * dy2 * dz2 * (3.0 * dx2**2 + 2.0 * dy2**2 + 3.0 * dz2**2) / ((dx2**2 + dy2**2 + dz2**2) ** 1.5 * (dx2**2 + dz2**2) ** 2) )