Create a model#
The model is built based on the graph and the desired handler. A mmodel
handler is an execution method that handles the node execution order and
intermediate value flow. The resulting instance is a callable that behaves
like a function. The resulting model copies and freezes the graph, making
it immutable. A handler class is passed to the handler
argument, and
any additional arguments of the handler can be passed as a dictionary to
the handler_kwargs
argument.
First, we define the nodes and the graph.
import numpy as np
import math
from mmodel import Graph, Node
grouped_edges = [
("add", ["log", "func node"]),
("log", "func node"),
]
def func(sum_xy, log_xy):
"""Function that adds a value to the multiplied inputs."""
return sum_xy * log_xy + 6
# define note objects
node_objects = [
Node("add", np.add, inputs=["x", "y"], output="sum_xy"),
Node("log", math.log, inputs=["sum_xy", "log_base"], output="log_xy"),
Node("func node", func, output="result"),
]
G = Graph(name="example_graph")
G.add_grouped_edges_from(grouped_edges)
G.set_node_objects_from(node_objects)
Then, we create the model instance.
from mmodel import MemHandler
model = Model(name='model', graph=G, handler=MemHandler, doc="Test model.")
>>> model
<mmodel.model.Model 'model'>
>>> print(model)
model(log_base, x, y)
returns: result
graph: example_graph
handler: MemHandler
Test model.
# visualize the graph
>>> model.visualize()
Note
The graph cannot have cycles.
The model determines the parameter for the model instance.
edit the model#
The model can be edited by appling one or multiple change of the arguments.
For example if we want to change the documentation of the model, we can
use the edit
method. A new model instance is returned.
new_model = model.edit(doc="New documentation.")
>>> print(new_model)
model(log_base, x, y)
returns: result
graph: example_graph
handler: MemHandler
New documentation.
extra return variables#
The default return of the model is the output of the terminal nodes. To output intermediate variables, use “returns” to define additional output for the model. All other handler parameters can be directly passed as keyword arguments.
See handler reference for all available handlers.
apply defaults to parameters#
Any parameter default values should be applied at the model level. To add default values, use the “param_defaults” argument:
model = Model(name='model', graph=G, handler=MemHandler, doc="Test model.",
param_defaults={"log_base": 10})
>>> print(model)
model(x, y, log_base=10)
returns: result
graph: example_graph
handler: MemHandler
Test model.